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nical complication that will need to be addressed for agent electroporation may greatly facilitate one of the
longer proteins is that all of the required aminoacyl- most promising uses of the unnatural amino acid tech-
tRNAs must be included in the translational mix. Most nology: the characterization of protein function in living
simply, this could be achieved by adding cellular frac- cells.
tions containing the various translational components. I thank Dr. Rebecca Alexander for comments on a
In this case, however, the natural aminoacyl-tRNA for draft of this preview.
the reassigned codon would have to be prevented from
acting, possibly with the use of a specific RS inhibitor.
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tion of novel agents that promote degradation of theScreening for Inducers
kinases Her2 and EGFR.of Kinase Degradation
Her2 is a transmembrane receptor tyrosine kinase that
heterodimerizes with other members of the Her family
(e.g., epidermal growth factor receptor (EGFR)/Her1,Targeted small molecule-induced protein degradation

is a promising approach to inhibit signaling within ki- Her3, and Her4) and promotes the transduction of prolif-
erative and survival signals [1]. Her2 is overexpressednase cascades. In this issue, researchers describe a

simple assay for the rapid, high-throughput identifica- in a significant proportion of adenocarcinomas, and clin-
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ical studies have demonstrated that elevated Her2 ex- promise for cancer treatment, but such approaches are
currently in their infancy. Previously, identification ofpression correlates with poor prognosis in multiple ma-

lignancies, including breast and ovarian cancer [2, 3]. compounds that promote Her2 and/or EGFR degra-
dation has required cumbersome in vitro analyses in-The kinase has therefore been identified as a valuable

molecular target for the treatment of these cancers. volving tissue culture with individual drugs followed by
detergent lysis of samples, polyacrylamide gel electro-Expression of EGFR at high levels is also associated

with aggressive cancer and a poor clinical prognosis phoresis of cellular proteins, and Western blotting to
determine Her2 and EGFR levels. Identification of new[4, 5]. Normally, epidermal growth factor (EGF) binding to

EGFR homodimers stimulates receptor downregulation agents that induce Her2 and/or EGFR degradation is
clearly warranted and could lead to novel and exciting(via internalization), and this depends on recruitment of

the E3 ubiquitin ligase, c-Cbl, to the phosphorylated therapeutic strategies; however, the current methodol-
ogy is decidedly unsuitable for rapid, high-throughputreceptors followed by c-Cbl-mediated EGFR ubiquitina-

tion and degradation [6]. In contrast, although certain screening of compound libraries.
The paper in this issue of Chemistry & Biology bytumor inhibitory Her2 antibodies, such as Herceptin,

enhance recruitment of c-Cbl to Her2, thereby accelerat- Chiosis et al. [18] describes a simple, cell-based, micro-
titer plate assay to quantify Her2 and EGFR protein lev-ing its internalization and degradation [7], in the absence

of such antibodies phosphorylated Her2 only weakly els. This assay is readily adaptable to a high-throughput
format and thus should allow for the rapid screening ofassociates with c-Cbl and thus is resistant to c-Cbl-

induced downregulation [1]. Indeed, Her2 heterodimer- compound libraries to identify novel inducers of Her2
and EGFR protein degradation. The method, which reliesization with EGFR antagonizes association of EGFR with

c-Cbl, thus promoting receptor longevity and recycling on whole-cell immunodetection of the proteins in ques-
tion, utilizes a minimal number of cells, yet is sufficientlyto the cell surface [8]. For this reason and because point

mutations that constitutively activate Her2 kinase activ- sensitive and reproducible to permit quantitative deter-
minations. The microtiter plate format requires expendi-ity are rarely found in Her2-overexpressing tumors [9],

inhibition of Her2 kinase activity per se might be ex- ture of minimal amounts of unknown compound, thus
making this an ideal platform for small molecule librarypected to prove less beneficial than approaches that

focus on downregulating expression of either Her2 or screening. This fast and reliable assay should greatly
improve the speed with which novel Her2 and EGFREGFR. Thus, identification of novel means to regulate

the stability of these kinases should provide additional degradation inducers can be identified and developed
for ultimate clinical use.opportunities for successfully interdicting signaling

through Her2- and EGFR-containing receptor complexes.
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